Human UDP-Glucuronosyltransferase 2B4 and 2B7 Are Responsible for Naftopidil Glucuronidation in Vitro
نویسندگان
چکیده
Naftopidil (NAF) is widely used for the treatment of benign prostatic hyperplasia and prevention of prostate cancer in elderly men. These patients receive a combination of drugs, which involves high risk for drug-drug interaction. NAF exhibits superior efficacy but must be administered at a much higher dosage than other therapeutic drugs. We previously showed that extensive glucuronidation of NAF enantiomers caused poor bioavailability. However, the metabolic pathway and mechanism of action of NAF enantiomer remain to be elucidated. The present study was performed to identify the human UDP-glucuronosyltransferases (UGTs) responsible for the glucuronidation of NAF enantiomers and to investigate the potential inhibition of UGT activity by NAF. The major metabolic sites examined were liver and kidney, which were compared with intestine. Screening of 12 recombinant UGTs showed that UGT2B7 primarily contributed to the metabolism of both enantiomers. Moreover, enzyme kinetics for R(+)-NAF, UGT2B7 (mean Km, 21 μM; mean Vmax, 1043 pmol/min/mg) showed significantly higher activity than observed for UGT2B4 and UGT1A9. UGT2B4 (mean Km, 55 μM; mean Vmax, 1976 pmol/min/mg) and UGT2B7 (mean Km, 38 μM; mean Vmax, 1331 pmol/min/mg) showed significantly higher catalysis of glucuronidation of S(-)-NAF than UGT1A9. In human liver microsomes, R(+)-NAF and S(-)-NAF also inhibited UGT1A9: mean Ki values for R(+)-NAF and S(-)-NAF were 10.0 μM and 11.5 μM, respectively. These data indicate that UGT2B7 was the principal enzyme mediating glucuronidation of R(+)-NAF and S(-)-NAF. UGT2B4 plays the key role in the stereoselective metabolism of NAF enantiomers. R(+)-NAF and S(-)-NAF may inhibit UGT1A9. Understanding the metabolism of NAF enantiomers, especially their interactions with metabolic enzymes, will help to elucidate potential drug-drug interactions and to optimize the administration of this medicine.
منابع مشابه
Identification of human UDP-glucuronosyltransferase isoforms responsible for the glucuronidation of glycyrrhetinic acid.
Glycyrrhetinic acid, the active metabolite of glycyrrhizin, is primarily eliminated by glucuronidation reaction in vivo. In spite of the widespread clinical use of glycyrrhizin, UDP-glucuronosyltransferase (UGT) isoforms involved in the glucuronidation of this drug are still unknown. This report identifies and characterizes the UGT isoforms responsible for glycyrrhetinic acid glucuronidation. I...
متن کاملPredominant contribution of UDP-glucuronosyltransferase 2B7 in the glucuronidation of racemic flurbiprofen in the human liver.
Flurbiprofen is a nonsteroidal anti-inflammatory drug used as a racemic mixture. Although glucuronidation is one of its elimination pathways, the role of UDP-glucuronosyltransferase (UGT) in this process remains to be investigated. Thus, the kinetics of the stereoselective glucuronidation of racemic (R,S)-flurbiprofen by recombinant UGT isozymes and human liver microsomes (HLMs) were investigat...
متن کاملGlucuronidation of nonsteroidal anti-inflammatory drugs: identifying the enzymes responsible in human liver microsomes.
Nonsteroidal anti-inflammatory drugs (NSAIDs), used for the treatment of pain and inflammation, are eliminated primarily through conjugation with polar sugar moieties to form glucuronides. Glucuronidation is catalyzed by the UDP-glucuronosyltransferases (UGT) superfamily. An inverse relationship may exist between glucuronidation activity and NSAID efficacy; however, specific UGTs catalyzing con...
متن کاملIdentification of the human UDP-glucuronosyltransferases involved in the glucuronidation of combretastatin A-4.
The stilbenic compound (Z)-combretastatin A-4 (CA-4) has been described as a potent tubulin polymerization inhibitor. In vivo, CA-4 binds to tubulin and inhibits microtubule depolymerization, which results in morphological changes in proliferating endothelial cells. Combretastatin A-4 prodrug phosphate is a leading vascular disrupting agent and is currently being evaluated in multiple clinical ...
متن کاملThe UDP-glucuronosyltransferase 2B7 isozyme is responsible for gemfibrozil glucuronidation in the human liver.
Gemfibrozil, a fibrate hypolipidemic agent, is eliminated in humans by glucuronidation. A gemfibrozil glucuronide has been reported to show time-dependent inhibition of cytochrome P450 2C8. Comprehensive assessment of the drug interaction between gemfibrozil and cytochrome P450 2C8 substrates requires a clear understanding of gemfibrozil glucuronidation. However, the primary UDP-glucuronosyltra...
متن کامل